Journal Article

Quantifying the shape of aging

Wrycza, T. F., Missov, T. I., Baudisch, A.
PLOS One, 10:3, e119163 (2015)

Abstract

In Biodemography, aging is typically measured and compared based on aging rates. We argue that this approach may be misleading, because it confounds the time aspect with the mere change aspect of aging. To disentangle these aspects, here we utilize a time-standardized framework and, instead of aging rates, suggest the shape of aging as a novel and valuable alternative concept for comparative aging research. The concept of shape captures the direction and degree of change in the force of mortality over age, which - on a demographic level - reflects aging. We 1) provide a list of shape properties that are desirable from a theoretical perspective, 2) suggest several demographically meaningful and non-parametric candidate measures to quantify shape, and 3) evaluate performance of these measures based on the list of properties as well as based on an illustrative analysis of a simple dataset. The shape measures suggested here aim to provide a general means to classify aging patterns independent of any particular mortality model and independent of any species-specific time-scale. Thereby they support systematic comparative aging research across different species or between populations of the same species under different conditions and constitute an extension of the toolbox available to comparative research in Biodemography.

Keywords: comparative analysis, demographic indicators, mathematical demography, mortality measurement
The Max Planck Institute for Demographic Research (MPIDR) in Rostock is one of the leading demographic research centers in the world. It's part of the Max Planck Society, the internationally renowned German research society.