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Abstract

Association-based linkage disequilibrium (LD) mapping
is anincreasingly important tool for localizing genes that
show potential influence on human aging and longevity.
As haplotypes contain more LD information than single
markers, a haplotype-based LD approach can have in-
creased power in detecting associations as well as in-
creased robustness in statistical testing. In this paper, we
develop a new statistical model to estimate haplotype
relative risks (HRRs) on human survival using unphased
multilocus genotype data from unrelated individuals in
cross-sectional studies. Based on the proportional haz-
ard assumption, the model can estimate haplotype risk
and frequency parameters, incorporate observed covari-
ates, assess interactions between haplotypes and the co-
variates, and investigate the modes of gene function. By
introducing population survival information available
from population statistics, we are able to develop a pro-
cedure that carries out the parameter estimation using a
nonparametric baseline hazard function and estimates

sex-specific HRRs to infer gene-sex interaction. We also
evaluate the haplotype effects on human survival while
taking into account individual heterogeneity in the unob-
served genetic and nongenetic factors or frailty by intro-
ducing the gamma-distributed frailty into the survival
function. After model validation by computer simulation,
we apply our method to an empirical data set to measure
haplotype effects on human survival and to estimate
haplotype frequencies at birth and over the observed
ages. Results from both simulation and model applica-
tion indicate that our survival analysis model is an effi-
cient method for inferring haplotype effects on human
survival in population-based association studies.
Copyright © 2005 S. Karger AG, Basel

Introduction

Although multidisciplinary approaches have been
used in the search of genes implicated in human aging
and longevity [1], the association-based linkage disequi-
librium (LD) mapping exhibits more power than the link-
age-based methods [2], a situation that mimics the map-
ping of complex or non-Mendelian disease genes [3].
With the completion of the human genome sequence and
the newly emerging high-throughput single nucleotide
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polymorphism genotyping techniques which enable the
high-density whole-genome screening of complex trait
genes, LD mapping is gaining more popularity [4]. At the
same time, instead of the traditional single-locus model,
multi-locus statistical approaches [5] that take into ac-
count the interdependence of genetic variants important
in complex disease etiology are appealing.

Because particular DNA variants may remain togeth-
er on ancestral haplotypes (set of ordered markers) for
many generations, groups of neighboring genetic variants
can form haplotypic diversity with distinctive patterns of
LD that can be exploited in both genetic linkage and as-
sociation studies [6]. Haplotype analysis is more efficient
than the single-locus association test because it makes use
of the LD information contained in the flanking markers
[7]. The ‘haplotype relative risk’ (HRR) approaches have
been applied to detect allelic associations when parental
genotypes are available for phase inference and for con-
structing the controls [8, 9]. Unfortunately, such methods
are not applicable in longevity studies because parental
genotype information is unavailable for the long-lived. In
order to reconstruct the missing phases in the genotype
data, different algorithms have been proposed. These in-
clude the rule-based algorithm [10], the E-M algorithm
[11] and the recent Bayesian approaches [12—-14]. Model
comparison [15] has shown that the Bayesian approach,
which uses the MCMC algorithm and Gibbs sampling
[12], can be regarded as an efficient tool for estimating
haplotypes [16]. It is necessary to point out that although
a haplotype association analysis of disease traits can be
conducted by directly treating the inferred haplotypes per
subject as if they were observed, such practice can result
in biased estimates of haplotype effects with possibly in-
creased errors in the estimation [17, 18]. The E-M algo-
rithm provides maximum likelihood estimates and there-
fore allows hypothesis testing using the likelihood ratio
statistic [19, 20]. However, the method is confined to
case-control data and provides no estimate or test of in-
dividual haplotypes. Epstein and Satten [21] introduced
aretrospective likelihood method to estimate and test the
effects of individual haplotypes on binary traits, but their
method is again restricted to case-control data. Using the
generalized linear model, Schaid et al. [22] proposed a
score test for haplotype inference. The model can be gen-
eralized to a variety of different disease traits and per-
forms efficient tests on individual haplotypes. In the con-
text of human longevity studies, the traditional E-M
based haplotype-estimating technique has been imple-
mented in data analysis [23-25]. In these applications,
the study designs are consequently limited to a simple
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case-control or two-group setup with cases consisting of
the long-lived or centenarians and controls of young in-
dividuals. Although popular in use, the case-control de-
sign has low power when applied to longevity studies as
the phenotype of interest (i.e. age) is a continuous trait
[26]. Furthermore, in cross-sectional studies, the ob-
served ages are those at participation which are all cen-
sored and cannot be modeled by the traditional survival
analysis models. It is thus necessary that efficient haplo-
type inference methods be derived to accommodate the
situation.

For the single-locus analysis, new statistical methods
have been developed to model genotype-specific survivals
[27-29]. These methods make full use of individual phe-
notype information and are thus inherently more power-
ful [26]. In this paper, we propose a new survival analysis
method to apply to unphased multi-locus genotype data
to evaluate haplotype effects on human survival and to
estimate haplotype frequencies at birth and over the ob-
served ages. By incorporating population survival infor-
mation in the analysis and based on the proportional haz-
ard assumption, we show how our model can estimate
sex-specific haplotype effects, incorporate observed co-
variates, assess haplotype-environment interactions, ex-
amine modes of haplotype function (multiplicative, dom-
inant and recessive) and model heterogeneity in the un-
observed individual frailty while using a nonparametric
baseline hazard function. Data-analyzing strategies are
also suggested to optimize the throughput of the data. Af-
ter model validation using computer simulation, the
model is applied to an empirical multi-locus genotype
data set collected in an association study on the interleu-
kin 6 (IL-6) gene and longevity [30] to estimate the rela-
tive risks and frequencies of the haplotypes. Finally, we
discuss the significance of our method in mapping genes
that modulate human survival and some practical issues
in model application.

Methods

Population and Haplogenotype-Specific Survivals

First we denote the collection of all the observed multi-locus
genotypes over the typed loci with G and the collection of all the
haplotypes that make up the genotypes with H. When haplotype
frequencies are in Hardy-Weinberg equilibrium (HWE), the fre-
quency of the haplotype pair or haplogenotype (4, /) is

Phh) {217,-17,- i<j |
(A Dip; i=j ( )
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where p; and p; are haplotype frequencies at birth for haplotypes /;
and A;. Assuming that the risks of the haplotypes (denoted as r; and
rj, respectively) are multiplicative, in a proportional hazard model
the hazard of death at age x for the haplogenotype made up of hap-
lotypes /; and #; is

i (X) = 1775 o (X) ()

where uo(x) is the baseline hazard function. Correspondingly, the
survival of carriers of the haplogenotype is

—L,, Andt

s, (x)=e? = e ™ — g (x) (3)

Giving HWE at birth, the mean survival of the population is the
weighted haplogenotype-specific survival, i.e.

= YPln.b)s, =2 Ypps, 0+
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The Likelihood Function

The parameterization in equation 4 is haplotype based, i.e. we
assume that haplotypes are known explicitly for each individual.
In the practical situation, what we observe are unphased multi-lo-
cus genotypes instead of haplotypes. However, for each multi-locus
genotype g, there is a set of haplotype pairs denoted as S(g) that
are consistent with g. With this relationship, the frequency of the
observed genotype g at age x can be expressed in terms of haplo-
type frequencies and haplogenotype-specific survivals by using
equation 4,

Y. Pln.n)s, (0
 ijeS(s)
p,(x) = S0 . ©)

With equation 5, we construct the likelihood function at age x us-
ing the multinomial distribution of the multi-locus genotype fre-
quencies in the population as

Y,

2eCG

logZ ,,.(x) x)log p,(x) . (6)

In equation 6, n,(x) is the number of individuals carrying the multi-
locus genotype g. The log likelihood of the entire data is simply the
sum of equation 6 over all the observed ages. The covariance matrix
obtained by inversing the information matrix can be used to calcu-
late the univariate Wald statistic for significance inferences of the
risk parameters.

Similarly to the calculation of allele frequencies from genotype
data, with the maximum likelihood estimates from equation 6 and
using equation 4, we can calculate the frequency of any haplotype
h; at age x as

Pis; (04052, p,p;s; (%)

) — _ <] 7
p;(x) 500 . (7

Modeling Heterogeneity

As a complex trait, human survival is modulated by the inter-
play of both genetic and nongenetic factors which form competing
risks (frailty) that contribute to the individual hazard of death [31].
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Ignoring the existence of heterogeneity in the unobserved individ-
ual frailty can lead to a substantial underestimation of the risks of
genetic factors [28, 29]. Under the proportional hazard assumption,
if an individual carrying a haplotype pair (/;, h)) has the frailty z,
the hazard of death at age x is

Wi j (X1 2) =z () = zrir; po (X).

The mean hazard of death for a heterogeneous population carrying
the haplogenotype is

7, 0=lu, Gt Ddz=u,, 0]t Ddz =, 070, (8)
0 0
Following the traditional approach [32-34], we assume that the

frailty z is gamma distributed with mean 1 and variance o°. Then
Z(x) in equation 8 can be derived as

x -1
- -1
z(x) = [1 +o? L;,, j(s)ds] =[1+d* H, ()

0
Substituted into equation 8, we get

5 (%)
1 +02rjrj-H0 (%)

- (0

:U,‘,j(/\') = 1+02H1-)j(X) = ()

where Hy(x) is the cumulative baseline hazard function. Corre-
spondingly, we have the mean survival for the haplogenotype,

1

5i;(0 =[1+0* r,r Hy (0] 7 (10)
In order to fit a frailty model, we replace equation 3 with equation
10 in the analyses. Estimating the variance parameter ¢° requires
a large sample size [35]. In small-scale investigations, o> can be de-
termined by a grid search for the peak of the likelihood for tenta-
tively assigned values of ¢ [29, 36]. Based on our experiences in
fitting the gamma frailty model to large population data sets, one
can alternatively fit a frailty model by simply setting o> to 0.1. This
can be conservatively compared with some empirical results [29,
35, 36]. However, we think that it is applicable to small data sets.

The Baseline Hazard

The baseline hazard function can take a parametric form such
as that of the Gompertz model, py(x) = ae’™. However, by introduc-
ing the population survival information available in population
statistics into equation 4, our model allows the estimation of a non-
parametric baseline hazard function. This is done by using a two-
step procedure described by Yashin et al. [28] and in more detail
by Tan et al. [29]. The idea is that, with a known population sur-
vival, equation 4 can be solved by using a numerical procedure to
get a nonparametric so(x) for the given haplotype risk and frequen-
cy parameters. In the estimation procedure, we start with an initial
guess of the haplotype risks and frequencies and apply it to equa-
tion 4 to calculate s'o(x). This §'¢(x) is introduced into equation 6
to estimate a new set of haplotype parameters which are then used
to calculate an updated s'((x). This process iterates until the likeli-
hood function converges [28, 29].

Sex-Specific HRRs
As a well-known phenomenon in demography, a sex difference
in human mortality exists in all populations. Such a difference is
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crucial in longevity studies because the majority of centenarians
are females [37, 38]. To take this into account, we introduce the
sex-specific population survival functions 5 ,,(x) and 5 (x) from the
population statistics into equation 4 and rewrite it as

Sm(x) = 2 Ph;.h)

ijeH

8o ()T
(11
sr(x) = ZP(]zl.,bj)[So (x) Firt

i,je H

By calculating the sex-specific baseline survival functions ,,,5(x)
and sso(x), we are able to estimate sex-specific HRRs to capture the
sex-dependent effects or gene-sex interaction in human survival.
When no sex-specific effect exists, the same risk parameters can be
assigned to reduce the number of parameters in the model. Note
that, in any case, the same haplotype frequency parameters are
specified for both sexes.

Incorporating Covariates and Interactions

In our proportional hazard model, it is possible to incorporate
nongenetic or environmental covariates to account for effects of the
observed confounding factors as well as gene-environment interac-
tions. If there is one environmental factor, geographical location
(south and north) that affects the mean population survival with
relative risk r,, and in addition has an interaction with one of the
haplotypes (haplotype /;) in our data, the risk of the haplotype is
i in the north and ; in the south. And if the proportion of north-
erners is p, we can rewrite equation 4 as

s(x) = psa(x) + (1 - p)ES(X)

,Irffc + (1 p) ZP (X) STiTj

i,jeH

—PZP 12 j

i,jeH

+p ZP . j o0 4 (1-p) Z P([gj,bj)so(x)’*f’f,

i,jeH i,jeH

(12)

In equation 12, the environmental effect 7, is defined as the risk of
being a northerner as opposed to being a southerner. Relative risks
for haplotype /; are estimated separately to allow for area-specific
effects or gene-environment interaction.

Nonmultiplicative Effects

Up to now, we have been assuming that the risks of haplotypes
are multiplicative. By strategic parameterization, our model can be
applied to detect effects of haplotypes that are dominant or reces-
sive. If the effect of haplotype /; is dominant over the others, then
equation 4 can be expressed as

S(x) = ZP(/;,,]; )5y (X)7 + ZP(/;_,,]; )s_; (%) (13)

i.jeH —i,je H
where the same risk parameter r; is imposed on carriers of the hap-
lotype regardless of their haplogenotypes. In the same manner,
when the effect of haplotype /; is recessive, we have

S0=2 2pp50(07 + Pl (0T + LP(h ks, (x). (14)

i<j, .je H —I,je H
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In equation 14, the risk of haplotype /; is only assigned to those
who have two copies of the haplotype. Note that, for the last terms
in both equation 13 and 14, the specification of the risk parameters
is ambiguous. This has to do with the data-analyzing strategies in
the next section.

Model Selection

In our model, we assign one risk and one frequency parameter
to each haplotype. Because the number of haplotypes increases ex-
ponentially with the number of typed loci, there will be too many
parameters to be estimated, thus reducing the power of the model.
Similar to Epstein and Satten [21], we recommend testing the as-
sociation between each haplotype and survival by setting the rela-
tive risk for each of the other haplotypes to 1. To further reduce the
numbers of parameters, we can group the rare haplotypes [22] and
similarly set the group risk to 1. In the analysis, different modes of
haplotype function can be assumed and tested. The subset of hap-
lotypes exhibiting a potential association with survival can be se-
lected and put together into the model for an extensive analysis. In
both the single-haplotype and the extensive analyses, the haplo-
types with risk set to 1 (including the grouped rare haplotypes) serve
as the reference or the baseline to ensure that the model is identifi-
able. The Akaike information criterion (AIC) [39] can be applied
to select a model with the maximum number of important haplo-
types [21]. Once the best performance model is selected, we suggest
using the log likelihood ratio test to obtain an overall significance
for the haplotype effects.

Simulation

We conduct a limited simulation study to examine the
performance of our model. Data sets of different sizes are
generated (1,000 replicates) for the given parameters us-
ing population survival data in the 2001 Danish life table
[40]. We take the haplotype frequencies estimated from
an empirical data set (3 single nucleotide polymorphisms,
8 haplotypes) [unpubl. data from our laboratory] to gen-
erate the haplotypes. Among the 8 haplotypes, we choose
one with a frequency of 0.145 as a beneficial haplotype
and set its HRR to 0.8. Besides the haplotype parameters,
we also assume that geographical location has an effect
on survival with the relative risk of 1.25 for the north and
1 for the south. The frequency of northerners is assigned
as 0.65 in the simulation. In addition, we assume that the
unobserved frailty is gamma distributed with mean 1 and
variance 0.1. Multi-locus genotypes over the 3 single nu-
cleotide polymorphism loci are simulated for individuals
from the ages of 50 to 99 with 10, 20 and 40 individuals
at each age (corresponding to sample sizes of n = 500,
1,000 and 2,000).

We specify 4 models to validate our method (models
1 and 3) and evaluate the effects of heterogeneity (model
2) and the observed nongenetic covariate (model 4) on
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Table 1. Estimated risk and frequency parameters by different models in the simulation study (1,000 replicates for each model)

Model and parameter  True n =500 n = 1,000 n = 2,000
medium percentile medium  percentile medium  percentile
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
Model 1 (62 = 0.1)
Haplotype freq. 0.145 0.144 0.113 0.177 0.145 0.124 0.167 0.145 0.125 0.162
HRR, north 0.800 0.800 0.614 1.057 0.801 0.666 0.960 0.801 0.707 0.918
HRR, south 1.000 1.006 0.735 1.385 1.008 0.795 1.253 1.007 0.856 1.169
Freq., north 0.650 0.652 0.598 0.701 0.650 0.611 0.686 0.650 0.624 0.678
Risk, north 1.250 1.254 1.113 1.420 1.250 1.147 1.360 1.252 1.178 1.325
Model 2 (o2 = 0)
Haplotype freq. 0.145 0.144 0.115 0.177 0.145 0.123 0.166 0.145 0.130 0.161
HRR, north 0.800 0.825 0.652 1.021 0.819 0.705 0.965 0.827 0.733 0.923
HRR, south 1.000 1.014 0.791 1.345 1.007 0.827 1.212 1.003 0.873 1.141
Freq., north 0.650 0.646 0.589 0.696 0.646 0.609 0.683 0.646 0.621 0.673
Risk, north 1.250 1.214 1.094 1.346 1.211 1.125 1.306 1.211 1.150 1.277
Model 3 (0% = 0.1)
Haplotype freq. 0.145 0.143 0.115 0.176 0.145 0.125 0.167 0.145 0.130 0.160
HRR 0.800 0.794 0.640 0.986 0.801 0.675 0.939 0.801 0.712 0.895
Freq., north 0.650 0.648 0.594 0.699 0.651 0.611 0.686 0.650 0.625 0.675
Risk, north 1.250 1.248 1.125 1.393 1.249 1.165 1.351 1.251 1.189 1.317
Model 4 (6% = 0.1)
Covariate ignored
Haplotype freq. 0.145 0.144 0.114 0.174 0.145 0.124 0.166 0.145 0.130 0.160
HRR 0.800 0.806 0.643 1.020 0.809 0.698 0.942 0.807 0.721 0.896

parameter estimation. For models 1 and 2, we generate
our data by assuming that, in addition to the risk of area,
the risk of haplotype is area dependent with an HRR =
0.8 in the north and an HRR =1 in the south. Simulation
results in table 1 show that all parameters used in gener-
ating the data are well retrieved by our model that takes
into account the unobserved frailty (model 1). In model
2, however, the estimated relative risks for area and the
beneficial haplotype are all biased towards 1. The results
indicate that ignorance of individual heterogeneity in un-
observed frailty can lead to conservative estimates of the
risk parameters [41]. In addition, one can see that a sam-
ple size of n > 500 is required to ensure that the range of
the 2.5-97.5% percentile for the estimated HRRs is ex-
clusive of the null risk of 1. In generating the data for
models 3 and 4, the same risk and frequency parameters
are assumed for the haplotype of interest and for area but
the HRR is no longer area dependent because here our
interest is to examine how ignorance of the existing risk
covariate (area) can affect the estimated HRR. Similar to
model 1, model 3 captures all the parameters adequately.
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However, the median of the estimated HRRs by model 4
is biased towards 1 for all the three different sample sizes
(table 1) which reminds us of the situation of model 2.
Moreover, by comparing the distribution of the estimated
HRRs in models 3 and 4 for n = 500, we see that the
ranges of the 2.5-97.5% percentile of HRRs for model 3
is well beyond 1 but that for model 4 includes the null risk
of 1. These results suggest that the exclusion of existing
risk covariates not only leads to biased estimates on the
relative risk parameters but could also result in reduced
power in haplotype effect inferences.

In figure 1, we show the simulated and the estimated
age patterns of haplotype frequency for the beneficial hap-
lotype in model 1 in the north (fig. 1a) and the south (fig.
1b; 1,000 individuals at each age). The estimated haplo-
type frequency (solid) using unphased genotype data cap-
tures the haplotype frequency trajectory in the simulated
data (dotted), which again validates our model. Further-
more, the area-dependent haplotype effect or haplotype-
environment interaction is clearly shown by the different
haplotype frequency patterns revealed in figure 1a and b.
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Fig. 1. The age patterns of the theoretical (dashed), the simulated (dotted) and the estimated (solid) haplotype
frequencies in the north (a) and the south (b). The simulated age pattern is based on a large sample of 1,000 in-
dividuals at each age from 50 to 99 years. The figure shows that the model correctly captures the true haplotype
frequency trajectory by age as well as gene-environment interaction or area-dependent HRR.
Application subjects into young and old groups, we applied our HRR

The increased level of IL-6 gene activity has been
linked to stress conditions that characterize the aging pro-
cess. Previous studies have revealed associations of 1L-6
with age-related diseases such as Alzheimer’s disease [42],
cardiovascular events [43] and type 2 diabetes [44]. The
influence of IL-6 on human aging and survival was inves-
tigated by Christiansen et al. [30], who carried out haplo-
type analysis on a total of 1,143 subjects genotyped at 2
single-point polymorphisms (-572G/C and -174G/C)
and 1 AT stretch polymorphism (-373AnTm, 4 alleles)
in the promoter region. In their study, haplotype frequen-
cies in the young (<70 years, 567 individuals) and the old
(93 years, 576 individuals) age groups were compared for
the 6 most common haplotypes (table 2) by the E-M al-
gorithm. A slight decrease with age in the frequency of
the —572G/-373A4T,/-174C haplotype (denoted as G/
AgT,/C in table 2) was found. Instead of dividing the

Haplotype Effects on Human Survival

model to the same data to estimate HRRs and infer the
effects of IL-6 on human survival. To fit the model, we
introduced the population survival data from the 2001
Danish life table [40]. Because our preliminary analysis
showed no sex-dependent haplotype effect in the data, we
assigned the same haplotype risk parameters for both sex-
es to reduce the number of parameters in the model. In
the analyses (table 2), effects of the haplotypes were as-
sumed to be multiplicative, dominant (equation 13) and
recessive (equation 14). In table 2, the HRR for each hap-
lotype was estimated by setting the HRRs for the other
haplotypes to 1. For each haplotype tested, we calculated
AIC for selecting the best-fitting model under the differ-
ent modes of haplotype function (multiplicative, domi-
nant, recessive). Among the 6 haplotypes, haplotype G/
AgT,/C showed the lowest AIC (5,413.244) in a multi-
plicative model with an HRR = 1.087 (p = 0.050) suggest-
ing the harmful effect of the haplotype on human sur-
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Table 2. Paremeter estimates and model

comparison by single-haplotype models Haplotype Frequency Relative risk? AIC
fitted to IL-6 data atbirth R gp 95% CI p value

Multiplicative
G/AgT,,/C 0.473 1.087  0.044 1.000-1.173  0.050 5,413.244
G/AgT /G 0.200 0.949  0.050 0.851-1.047  0.313 5,415.939
G/A 0T 1/G 0.193 0.925 0.053 0.821-1.029  0.158 5,414.931
G/A 0T 10/G 0.072 1.046  0.082 0.885-1.207 0.575 5,416.666
C/A (T 1o/G 0.038 1.031 0.106 0.823-1.237  0.773 5,416.870
C/AgT,,/C 0.013 0.758  0.162 0.440-1.075 0.136 5,414.771

Dominant
G/AgT,/C 0.460 1.068  0.059 0.952-1.183  0.250 5,415.617
G/AgT /G 0.209 0.991 0.057 0.879-1.102  0.876 5,416.921
G/A 0T 11/G 0.194 0911 0.056 0.801-1.020  0.110 5,414.424
G/A 0T 10/G 0.070 1.017  0.086 0.848-1.186  0.841 5,416.906
C/A 10T 10/G 0.039 1.066 0.117 0.837-1.294  0.570 5,416.626
C/A¢Ty,/C 0.013 0.758  0.162 0.440-1.075 0.136 5,414.771

Recessive?
G/AgT,/C 0.461 1.097  0.067 0.967-1.227  0.145 5,414.726
G/AgT /G 0.202 0.826  0.093 0.645-1.006  0.060 5,413.795
G/A 0T 1/G 0.208 1.008  0.061 0.889-1.127  0.889 5,416.939
G/A0T10/G 0.070 1.613  0.587 0.463-2.758  0.296 5,415.127
C/A 0T 10/G 0.036 0.556  0.333 0.000-1.205 0.182 5,415.659

2 Heterogeneity model with o = 0.1.
b No estimate on C/A¢T;;/C haplotype due to low frequency.

vival. Consistent with Christiansen et al. [30], our model
pointed to G/AgT;,/C as the only haplotype exhibiting
potential influence on human lifespan. Even though more
than half of the subjects in our sample were of the same
age (93 years), our model produced a higher significance
level for the effect of the G/AgT;,/C haplotype as com-
pared with the two-group method [30]. However, as the
haplotype was only of marginal significance and consider-
ing the multiple haplotypes tested in table 2, we cautious-
ly conclude that our result of the G/AgT,,/C haplotype is
only suggestive. The second lowest AIC was observed for
the recessive model of haplotype G/A¢T;,;/G. In contrast
to the G/AgT;,/C haplotype, its HRR (0.826) indicates
that it might be a beneficial haplotype that reduces the
hazard of death for homozygous carriers of the haplotype.
By calculating the Wald statistic, we obtain a p value of
0.060 which is insignificant.

In table 2, AIC was merely applied to single-haplotype
models to evaluate the haplotype effects under different
modes of haplotype function. To illustrate how AIC can
be used to select the best model of the models with differ-
ent subsets of haplotypes, we also fitted a 2-haplotype
model by adding the recessive G/AyT,,/G haplotype to
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the G/AgT,/C dominant model. We got a higher AIC
(5,413.270) from the 2-haplotype model as compared
with the AIC (5,413.244) from the 1-haplotype model
(G/AgT|,/C dominant). As expected, the 2-haplotype
model which includes an insignificant haplotype does not
outperform the previous 1-haplotype model.

Assuming that the effects of the 6 haplotypes are mul-
tiplicative, we also fitted a multiple-haplotype model (log
likelihood: -2,694.759) to illustrate how the likelihood
ratio test can be used to assess the overall statistical sig-
nificance of the effects of the 6 haplotypes included in the
model. Since the log likelihood is -2,698.472 in the mul-
tiple-haplotype model that assumes no haplotype effect,
we obtain a likelihood ratio test statistic with 6 degrees
of freedom of -2[-2,698.472 - (-2,694.759)] = 7.427.
This leads to an overall p value of 0.283 which again
means that there is no association between the haplotypes
and survival. In figure 2, we show the estimated haplotype
frequency trajectories over the observed ages from the
multiple-haplotype model. The modest effect of the G/
AgT;,/C haplotype is shown by its frequency pattern that
slightly decreases with increasing age. Due to the low
death rate at early ages and low risks of the haplotypes,
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Fig. 2. Estimated haplotype frequency tra- o1l
jectories over the observed ages for the IL-6 B
data. The modest effect of the G/AsT»/C | |
haplotype is shown by its frequency pattern S —
that slightly decreases with increasing age. 0.0~
Due to the low death rate at early ages and L I ! ! ! )
the low risk of the haplotypes, frequency 45 55 65 75 85 95
changes are mainly observable at high Age (years)
ages.
Table 3. Comparison of the estimated haplotype frequencies by the Discussion

HRR model and the E-M algorithm assuming multiplicative hap-
lotype effects

Haplotype HRR model E-M algorithm?
46 93 <70 93
G/AgT,/C 0.472 0.430 <0.470 0.432
G/AyT /G 0.201 0.219 <0.203 0.217
G/A 0T 11/G 0.195 0.221 <0.196 0.222
G/A (T o/G 0.072 0.066 <0.071 0.066
C/A 10T 1o/G 0.038 0.035 <0.038 0.035
C/AgT,,/C 0.013 0.021 <0.013 0.020

2 From Christiansen et al. [30].

frequency changes (although insignificant) are mainly ob-
served at high ages. In table 3, we compare the calculated
haplotype frequencies at the ages of 46 (the youngest age
in our subjects) and 93 with the frequencies calculated by
the E-M algorithm [30]. It is interesting to see that both
models produced consistent frequency estimates for the
same data. However, it is important to point out that our
HRR model not only estimates the frequency for each
haplotype, but also provides point and interval estimates
on its relative risk.

Haplotype Effects on Human Survival

We have shown that our HRR model can be applied
to multi-locus genotype data from unrelated individuals
to estimate frequencies and risks of haplotypes while in-
corporating additional covariates. In addition, our pro-
portional hazard model facilitates the estimation of sex-
specific HRRs and the assessment of interactions between
haplotypes and covariates as well as examination of the
modes of gene function. By introducing the gamma-dis-
tributed frailty, our model can also infer the haplotype
effects on human survival with consideration of individ-
ual heterogeneity in the unobserved frailty which is im-
portant in the context of longevity studies because of the
complex nature of the human lifespan. Given the crucial
role of association studies in the genetics of human aging
and longevity, we think that our HRR model may serve
as a useful tool for researchers in this field.

The basic assumption in our model is that haplotype
frequencies at birth follow the Hardy-Weinberg law. As
we have mentioned, such an assumption is sensible as
differential survival driven by the association between
the haplotypes and hazard of death has not yet imposed
survival selection on the subjects as long as the haplotypes
we are interested in do not affect in utero survival and
there is no preferential transmission of a particular ge-
netic variant in the region under investigation. Under this
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assumption, genotype frequency information at other
ages can contribute to the maximum likelihood estima-
tion of the haplotype frequencies at birth. Most impor-
tantly, as long as HWE holds at birth, we can relax with
regard to the HWE assumption on haplotype frequencies
at other ages except when a multiplicative effect model is
preferred. This is important because different genetic
mechanisms or modes in the haplotype function in hu-
man survival can be tested without imposing HWE at the
advanced ages. Here, it is necessary to point out that
HWE might not be a reasonable assumption in case of a
subdivided human population as it can destroy HWE at
any age (including at birth). In family-based association
studies, such a problem can be solved by conducting the
transmission/disequilibrium test [45]. However, in genet-
ic association studies of human aging and longevity, pa-
rental genotype information is usually missing which
means that one has to stick to the population-based as-
sociation approaches. Using unlinked markers, Pritchard
and Rosenberg [46] proposed a statistical method to de-
tect population stratification. Furthermore, statistical
tests that account for population substructure have been
developed for case-control association studies [47, 48].
More work is needed for implementing these ideas in the
genetic association analysis of human survival traits.
Because we assume that the risk of haplotype on the
hazard of death is constant over the ages, our model is a
proportional hazard model [49] in nature. Antagonistic
pleiotropic effects have occasionally been reported in the
genetic studies on human longevity [50, 51]. To deal with
this situation, parametric survival models were proposed
in the analysis of single-locus data [27]. Such approaches
model the antagonistic effect as an intersection of the
mortality curves for different genotypes. Although they
can easily be implemented in our model, there are impor-
tant issues to be considered regarding the parametric
modeling. Firstly, when the sample size is limited, there

will be a considerable error in estimating the genotype-
specific survival distributions. Consequently, the age-de-
pendent effect modeled by the differential survival be-
tween the genotypes is unreliable. This becomes more
problematic at advanced ages when sample collecting is
difficult. Secondly, the choice of a proper parametric form
for the survival function can be crucial in determining the
results. At extreme ages, the validity of the parametric
survival function, such as the Gompertz or the Gom-
pertz-Makeham models, has been questioned recently
[52]. On the other hand, when the proportional hazard
model is applicable, our method works without imposing
any parametric form on the baseline hazard function
when population survival from population statistics is
introduced.

Although our model is capable of incorporating covari-
ate, it must be pointed out that because the likelihood
function is based on the age pattern in the frequency
changes of the subgroups formed by the combination of
haplogenotypes and the covariate, the covariate has to be
an attribute fixed early in life. We refer the fixed attributes
or covariates to factors that characterize an individual’s
social class, education or persistent living environment.
Studies on Danish twins have shown that such fixed at-
tributes are important factors in determining an individ-
ual’s lifespan [53, 54]. Most importantly, the capability
of assessing the interaction effect between haplotype and
the observed covariate (fig. 1) could help us to better un-
derstand the mechanisms in human aging and survival.
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