Journal Article

Optimal expectile smoothing

Schnabel, S., Eilers, P. H. C.
Computational Statistics and Data Analysis, 53:12, 4168–4177 (2009)

Abstract

Quantiles are computed by optimizing an asymmetrically weighted L1 norm, i.e. the sum of absolute values of residuals. Expectiles are obtained in a similar way when using an L2 norm, i.e. the sum of squares. Computation is extremely simple: weighted regression leads to the global minimum in a handful of iterations. Least asymmetrically weighted squares are combined with P-splines to compute smooth expectile curves. Asymmetric cross-validation and the Schall algorithm for mixed models allow efficient optimization of the smoothing parameter. Performance is illustrated on simulated and empirical data.
The Max Planck Institute for Demographic Research (MPIDR) in Rostock is one of the leading demographic research centers in the world. It's part of the Max Planck Society, the internationally renowned German research society.