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Abstract15

Background: An Arriaga decomposition partitions differences in life16

expectancy into contributions from mortality rate differences in each age.17

A Kitagawa decomposition partitions a difference between two weighted18

means into effects from differences in structure and from differences in19

each element of the weighted value.20

Methods: Life expectancy differences between like-defined subpopula-21

tions can be decomposed using the Arriaga method, or a variant thereof.22

The results of subgroup-specific decompositions can be weighted together23

using the value component from a Kitagawa decomposition of total life24

expectancy, given that subpopulations are blended in the radix age. The25

composition component of the same Kitagawa decomposition gives the26

effect of subgroup composition on total life expectancy differences.27

Results: Notable properties of the method include: (i) it accommodates28

any number of subpopulations, (ii) it easily incorporates cause-of-death29

information, and (iii) composition is considered in the radix age. We apply30

the method to Spanish cause- and education-specific data.31
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Conclusions: This method can further disentangle the effects of mortality32

and composition differences, helping to explain or clarify paradoxes and33

secular change. We give both R code and spreadsheet implementations of34

the method.35

Keywords: Decomposition, Mortality, Cause of death, Population Structure,36

Mortality Inequalities37

Introduction38

Population-level differences in life expectancy have been widely analyzed39

using decomposition methods to understand the impacts of mortality differ-40

ences in age groups (e.g., Arriaga, 1984; Pollard, 1988), or Kitagawa (1955)41

to understand better the impact of compositional differences in social strata42

(Kitagawa, 1977). It has long been known among demographers that improve-43

ments in social welfare have the potential to bring large scale improvements in44

mortality conditions even net of medical improvements (Kitagawa & Hauser,45

1968). However, very few demographers have ventured to account for both46

age-specific effects and compositional effects at the same time (Hendi & Ho,47

2021; Su, van Raalte, Aburto, & Canudas-Romo, 2024; Su, Welsh, Korda, &48

Canudas-Romo, 2023; Torres, Canudas-Romo, & Oeppen, 2019),. Disentan-49

gling the compositional effect within a conventional age group decomposition50

would improve our understanding of life expectancy differences between51

populations.52

The life expectancy decomposition method proposed by Arriaga (1984)53

separates a change in life expectancy into contributions due to mortality54

changes at different ages. This technique is designed to be practical in that55

it is framed in terms of lifetable columns expressed in discrete age groups.56

Two well-known properties of the method are that mortality changes in dif-57

ferent ages do not need to be proportional and that the derived contributions58

sum exactly to the observed difference in life expectancy. A documented but59
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lesser-known property of this method is its asymmetry: the absolute val-60

ues of age-specific contributions depend on whether we compare population61

one with two, or vice versa. This is why the method is described in terms of62

changes rather than group differences; the direction of time is clear, so we63

always decompose an earlier period against a later period. Importantly, the64

method is designed to work with homogeneous populations, meaning a single65

lifetable represents each population. Let’s call this method and the variant of66

it that we later apply the “Arriaga method”. The Arriaga method has differ-67

ent extensions available to separate the effects of different causes of death68

within age groups. We seek to extend this method to account for lifetables69

that are composed of subpopulations with different mortality.70

The decomposition method proposed by Kitagawa (1955) separates dif-71

ferences in a weighted mean into contributions from differences in weights72

(structure) and the value being weighted. Often, the weighted values are73

rates, but in our case, the weighted values will be the life expectancies74

of subgroups. This method is well-known to partition differences owing to75

“structure” and “value” components, which sum exactly to the observed76

difference in weighted means. The individual elements of the value being77

weighted (in our case, life expectancies) have identifiable effects. It is not well-78

known that the individual elements of the structure component do not have79

identifiable effects. Instead, the structure effects should be summed up as a80

total marginal effect due to composition differences. We refer to this method81

as the “Kitagawa” method.82

We propose to treat the problem of life expectancy decomposition by age,83

where a total life expectancy is calculated as the weighted mean of the84

expectancies of subpopulations. This is only practical when each population85

is composed of like-defined subpopulations. For example, we may decompose86

the life expectancy difference between two countries considering differences87

in education structure, since life expectancy varies by education level (Mack-88

enbach et al., 2019; Trias-Llimós, Spijker, Blanes, & Permanyer, 2023). Or,89
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one might wish to calculate a national life expectancy as the weighted average90

of its regions at two points in time since regional weightings and inequali-91

ties may have changed over time. In such scenarios, a decomposition should92

yield the contribution to the overall life expectancy difference stemming from93

rate differences in each age (and potentially causes of death) within each94

subpopulation while giving the overall effect of compositional differences. We95

propose a straightforward analytic method to perform such decompositions.96

In short, differences in life expectancy between subpopulations can be97

decomposed using the Arriaga method, one of its variants, or by any other98

life expectancy decomposition method that is acceptably precise with discrete99

data (Andreev, Shkolnikov, & Begun, 2002; Horiuchi, Wilmoth, & Pletcher,100

2008; Ponnapalli, 2005). In a second step, the Kitagawa method is then used101

to rescale group-specific life expectancy decompositions, yielding an extra102

component telling us the importance of compositional differences. We justify103

this second-pass rescaling and demonstrate that the results of this procedure104

align with those of a linear integral reframing of the problem, per Horiuchi et105

al. (2008). We then apply these methods to decompose the sex gap between106

Spanish men and women in remaining life expectancy at age 35, considering107

differences in composition by education attainment around the same age and108

considering cause-specific mortality rates.109

Method110

Notation111

We use the following variables and scripting, most of which are lifetable112

columns:113

• nma mortality rate in the age interval [a, a+ n).114

• ℓa lifetable survivorship at exact age a.115

• nLa lifetable person-years lived in the interval [a, a+ n).116

• Ta total lifetable person-years lived beyond age a.117
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• ea remaining life expectancy at exact age a.118

• πs
a the population fraction for subgroup s in age a.119

We use the superscript s to index subpopulations comprising the total120

population, and the superscript “1” to typically indicate the population with121

the lower value of e0, and “2” for the higher value, such that their difference,122

∆ = e20 − e10, is always positive. Causes of death may be indicated with a123

c subscript, i.e. ma,c. Throughout the manuscript, we assume single-year124

age groups and omit age interval (left-side) subscripts (n) where they would125

otherwise be due.126

Averaging life expectancy127

Vaupel (2002) distinguishes between two major approaches to calculate life128

expectancy for a total population composed of observed subgroups. The dom-129

inant approach is based on averaging the mortality rate in each age by130

aggregating deaths and exposures over all subpopulations and calculating131

the rate per equation (1):132

ma =

∑
i D

i
a∑

i E
i
a

=
∑
i

πi
am

i
a , (1)

where D and E stand for deaths and exposures, respectively. This is the stan-133

dard method used implicitly or explicitly by national statistical offices, the134

Human Mortality Database (Wilmoth et al., 2021), or the World Population135

Prospects (UN Population Division, 2022), among others. Vaupel (2002) called136

this approach the current rates perspective, which treats a heterogeneous137

population as a homogeneous one.138

A second approach derives independent subgroup-specific lifetables and139

then weights life expectancies together based on an initial mixing composition140

to obtain the total life expectancy per equation (2):141

e0 =
∑
s

πs
0 · es0 . (2)
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This method aligns with Vaupel’s current conditions approach, at least to142

the extent that heterogeneous conditions are accounted for using observed143

strata. This second approach is commonly applied in multistate models with144

strata combined according to mixed initial conditions to obtain the total pop-145

ulation (Caswell, de Vries, Hartemink, Roth, & van Daalen, 2018; Caswell &146

van Daalen, 2021), occasionally also with standard lifetables (Gupta, 1988;147

Muszynska-Spielauer & Riffe, 2022), or when calculating between-within148

decompositions of variance or other similar summary measures (Riffe, van149

Raalte, & Dudel, 2024; Seaman, Riffe, & Caswell, 2019). If the composition150

is more favorable in younger than in older ages (for example when younger151

generations have higher average educational attainment), the life expectancy152

obtained with (2) will be higher than one based on (1). This is the total life153

expectancy approach that our proposed method is designed to decompose.154

Kitagawa decomposition155

Equation (2) treats the total life expectancy as a weighted average, allowing156

us to precisely decompose a difference in e0, i.e. where ∆ = e20 − e10, using the157

formulas from Kitagawa (1955). We presume that population 2 has the higher158

life expectancy of the two, such that ∆ is positive. Specifically, equation (3)159

gives an overall effect of differences in composition:160

∆(π) =
∑
s

(
πs,2 − πs,1

)
· es0 , (3)

where161

es0 =
es,10 + es,20

2
(4)

This result is widely known. Note that the the composition effect must be162

summed this way because group-specific composition (structure) effects are163

not well-identified and therefore cannot be interpreted in isolation. Equation164

(5) gives the subgroup-specific effects of differences in life expectancy:165

∆(es0) =
(
es,20 − es,10

)
· πs , (5)
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where πs is the average composition, analogous to equation (4), and where the166

superscripts are consistent with those used to calculate the total difference167

∆.168

Equation (6) states that the observed difference in total life expectancy169

is the sum of (i) a single component capturing the effect of compositional170

change and (ii) a set of components giving the contribution of each subgroup’s171

life expectancy difference to the total life expectancy difference. This second172

effect could equivalently be called the rate effect because each life expectancy173

is ultimately a function of mortality rates.174

∆ = ∆(π) +
∑
s

∆(es0). (6)

Symmetrical Arriaga decomposition175

The rate effect as per (5) can be viewed as the net effect on total life expectancy176

differences resulting from the age-specific (potentially also cause-specific)177

differences between like subgroups, as isolated by various life expectancy178

decomposition methods. In this setting, the choice of method to derive age-179

specific effects for subgroup-specific changes in life expectancy is not crucial.180

The Arriaga (1984) decomposition approach is widely favored because it181

is designed for discrete data, it is analytic (implying computational effi-182

ciency), and because decomposition results sum exactly to the observed life183

expectancy difference. Since our application concerns sex differences rather184

than changes over time, we consider a symmetrical Arriaga decomposition.185

Since we also include cause-of-death information, we transform the symmet-186

rical decomposition results into an implied sensitivity function. This exercise187

is repeated for each subgroup to decompose group-specific changes in life188

expectancy (indicated with the superscript s on each variable):189

∆s = es,20 − es,10 (7)
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In this equation ∆s is the subgroup-specific (s) difference in life expectancy190

being decomposed, which is composed of age-specific contributions,
−→
∆s

a or191

←−
∆s

a depending on whether we decompose from population 1 to 2 (forward) or192

from 2 to 1 (backward). The forward age-specific values
−→
∆s

a can be calculated193

following Arriaga’s decomposition method, consistent with Arriaga (1984) or194

the presentation in Preston, Heuveline, and Guillot (2000), as outlined in195

equation (8). We use a lifetable radix of 1, meaning ℓ0 = 1, to simplify the196

formula slightly.197

−→
∆s

a =


ℓs,1a ·

(
Ls,2

a

ℓs,2a
− Ls,1

a

ℓs,1a

)
+ T s,2

a+n ·
(

ℓs,1a

ℓs,2a
− ℓs,1a+n

ℓs,2a+n

)
∀a < ω,

ℓs,1ω · (es,2ω − es,1ω ) ∀a = ω.
(8)

Equation (8) represents the first pass of our symmetrical decomposition,198

while (9) is the second pass, which is identical except for swapping population199

superscripts.200

←−
∆s

a =


ℓs,2a ·

(
Ls,1

a

ℓs,1a
− Ls,2

a

ℓs,2a

)
+ T s,1

a+n ·
(

ℓs,2a

ℓs,1a
− ℓs,2a+n

ℓs,1a+n

)
∀a < ω,

ℓs,2ω · (es,1ω − es,2ω ) ∀a = ω.
(9)

Importantly,201

−∆s =
∑
a

←−
∆s

a (10)

= e10 − e20.

A symmetrical estimate of ∆s
a is given by the sign-adjusted average of (8)202

and (9) for each age, again with a preference for a positive difference:203

∆s
a =

(−→
∆s

a −
←−
∆s

a

)
2

. (11)

Repeat the symmetrical Arriaga steps to derive age-specific contributions,204

∆s
a, for each life expectancy difference between like-defined subgroups. To205
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take into account information on causes of death, it is best to derive an ad-206

hoc all-cause sensitivity function, ssa, by dividing the decomposition result by207

the mortality rate difference:208

ssa =
∆s

a

ms,2
a −ms,1

a

, (12)

and then multiply age-cause-specific mortality rate differences into ssa209

to obtain the subgroup-specific decomposition by age and cause per210

equation (13).211

∆s
a,c = ssa ·

(
ms,2

a,c −ms,1
a,c

)
. (13)

This way of accounting for causes of death is exactly additive. However, if212

any all-cause mortality rate difference is close to 0, equation (12) is vulnera-213

ble, in which case we advise deriving the sensitivity using a more robust (but214

less precise) approach (Riffe & Atance, 2024)215

Rescale Arriaga results216

To obtain the net impact of ∆s
a (or ∆s

a,c) on overall life expectancy change we217

rescale using (14) to match the life expectancy components from equation (5).218

∆s,net
a,c = ∆es0 ·

∆s
a,c

∆s
, (14)

With the composition effect from equation (3) ( ∆π) and (14), we have all219

elements of the proposed decomposition:220

∆ = ∆π +
∑
s

∑
a

∑
c

∆s,net
a,c . (15)

Application221

We use data from Trias-Llimós et al. (2023) on sex-, age-, education-,222

and cause-specific death counts for individuals aged 35 and over for the223

years 2016-21 in Spain, which were obtained by request from the Span-224

ish National Statistics Institute (INE). We use all-cause mortality rates for225
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each education- and sex-specific subpopulation from the same source. Edu-226

cational attainment information is not recorded on death certificates, but227

INE adds this variable through multiple data linkages INE (2020), includ-228

ing municipal population registers (“Padrón”) and the 2011 census. We229

redistributed deaths with missing education codes (< 2% of deaths) across230

the four educational groups within age, sex, and cause of death classes,231

proportional to deaths with non-missing education. We then grouped edu-232

cational attainment into three categories: Low (primary education or less),233

Medium (secondary education), and High (tertiary or university education).234

We grouped causes of death from the original ICD10 4-digit codes into 17235

main causes: Infectious (ICD-10 codes: A00-B99), Neoplasms (C00-D48),236

Blood (D50-D89), Endocrine (E00-E90), Mental (F00-F99), Nervous (G00-237

G99), Circulatory (00-I99), Respiratory (J00-J99), Digestive (K00-K93), Skin238

(L00-L99), Musculoskeletal (M00-M99), Genitourinary (N00-N99), Congeni-239

tal (Q00-Q99), Ill-defined (R00-R94), External (chapters S, T, V, W, X and Y),240

Other causes (chapters H, O and P), and COVID-19 (U071-U072). Moreover,241

to separate the pandemic period we combined years into two time periods:242

2016-2019 and 2020+. Our main results refer to 2016-2019, whereas extra243

results for 2020-2021 are given in the materials repository. We smoothed244

and graduated the original data from 5-year age groups to single ages using245

a generalized additive model (GAM), including a P-spline over age and pop-246

ulation offsets (S. Wood, 2017; S.N. Wood, 2011). The GAM formula is given247

in equation (16), using the Quasi-Poisson family of models to account for248

possible overdispersion or Negative Binomial model in cases with a more249

substantial overdispersion:250

log(µa) = β0 + f(a) + ln(popa). (16)
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Results251

We present empirical results for the decomposition of the sex difference in252

life expectancy in 2016-2019. Table 1 presents the components of the Kita-253

gawa decomposition for males and females. In this context, π c represents254

the educational structure, while e(35) denotes life expectancy at age 35 (“rate”255

element in original Kitagawa terms). The table also gives the corresponding256

education structure and life expectancy differences between sexes. The final257

element, ∆(es35), is the decomposition result, which gives the education group258

contribution. The largest life expectancy gap is observed among individuals259

with Primary and Secondary education levels, and this gap is lower for those260

with Higher education.261

Education πf πm πf − πm e(35)f e(35)m e(35)
e(35)f−

e(35)m
∆(es35)

Primary 0.09 0.10 -0.01 48.21 42.47 45.34 5.74 0.54

Secondary 0.41 0.52 -0.11 50.29 44.52 47.40 5.78 2.69

Higher 0.50 0.38 0.12 51.30 46.92 49.11 4.38 1.92

Table 1 Elements of the Kitagawa decomposition, sex gaps in life expectancy in Spain,

2016-19

The corresponding difference in education-specific life expectancy is262

also illustrated in Figure 1. This figure additionally shows the differences263

observed for standard aggregated (non-stationary) versus radix-weighted life264

expectancy (stationary).265

Figure 2 is complementary to Figure 1 and represents the education con-266

tribution to the e(35) sex gap with the educational composition component267

contribution, about 3 months, being added to the figure.268

Figure 3 illustrates the cause-specific contributions to the life expectancy269

gap. The majority of this gap is explained by differences in mortality from270

cancer, circulatory diseases, respiratory conditions, and external causes.271

Neoplasms alone contribute to almost two full years of life expectancy.272
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Fig. 1 The Female-Male difference in e(35) by education and population type, Spain 2016-19.

The only categories where males have a slight advantage in mortality are273

musculoskeletal and other minor causes.274

Further decomposition of cause-specific differences for age and education275

components of composed decomposition is shown in Figure 4. The majority276

of the difference in neoplasm mortality is concentrated in the older age group277

of 70-80 years. The circulatory component is observed in slightly younger278

ages and is more uniformly distributed between ages 60 and 80. In contrast,279

the respiratory component is more pronounced around age 85. The external280

causes of death primarily contribute to the difference in younger ages and281

since our data is bounded below by the age of 35, the full effect cannot be282

fully observed here.283
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Fig. 2 Education structure contribution to total e(35) sex gap, Spain 2016-19

Discussion284

In this paper, we propose a method for decomposing the differences in life285

expectancy that accounts for the compositional effects of education and286

causes of death between two populations mixed in the radix. Deriving an287

analytical solution for decomposition offers several advantages over alterna-288

tive methods, particularly in terms of simplicity, speed, and repeatability.289

Unlike the linear integral method Horiuchi et al. (2008), which requires pro-290

gramming expertise, our approach can be executed swiftly and efficiently,291

even within spreadsheet-like environments (see reproducibility repository292

for an example). The computational efficiency of our method allows for the293

calculation of confidence intervals using bootstrapping.294
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Fig. 3 Cause-specific contribution to sex difference in total e(35), Spain 2016-19. The Education

structure contribution is presented in a different colour

Using the Kitagawa decomposition approach (Kitagawa, 1955) to weigh295

together group-specific paired decompositions, our method can be general-296

ized to address many decomposition problems involving structural composi-297

tional components, and it is not bound to mortality analyses. However, this298

post-weighting approach is most suitable for cases where populations are299

blended in a radix. In contrast, other approaches in the literature (Hendi300

& Ho, 2021; Su et al., 2024, 2023; Torres et al., 2019) decompose refer-301

ring to the standard current rates (Vaupel, 2002) method of calculating life302

expectancy. These approaches treat the age pattern of group prevalence dif-303

ferently, in essence fixing group prevalence (weights) rather than making304

prevalence depend on mortality. We point out that mortality is often one of305

the major drivers of how group prevalence weights change over age.306

When incorporating information on causes of death, a potential vulner-307

ability of our method arises when the difference in mortality rates in the308
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Fig. 4 The contributions of age, education, and major causes of death to the sex gap in total

e(35).

denominator of equation (12) approaches zero (compare with Box 4.3 of309

Preston et al. (2000)), rendering an implausible result. In this case, one310

may prefer to use a direct approximation or numerical estimate of the life311

expectancy sensitivity in equation (13).312

Our empirical results indicate that the sex gap in life expectancy remains313

a significant issue in Spain across all educational strata. However, it is about314

25% lower in the Higher education group. This can be attributed to several315
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factors, including females’ lower engagement in risky behaviours (Byrnes,316

Miller, & Schafer, 1999; Cook & Bellis, 2001; Kritsotakis, Psarrou, Vassi-317

laki, Androulaki, & Philalithis, 2016; Olson, Hummer, & Harris, 2017; Ross,318

Masters, & Hummer, 2012), better jobs and greater health awareness of319

males with higher education (Lawrence, 2017; McMahon, 2009; Ross et al.,320

2012; Ross & Wu, 1995). In terms of causes, neoplasms, circulatory dis-321

eases, and respiratory diseases account for the largest contributions to the322

sex gap. Given that the male disadvantage peaks around ages 65-85 (birth323

cohorts 1934-1951), this difference can be partly explained by the differences324

in smoking patterns between males and females within each subpopulation325

(Haeberer et al., 2020). Since our findings are based on education as a marker326

of socioeconomic status, they refer only to ages above 35. Therefore, we do327

not here measure the full power of socioeconomic status or different causes328

of death in driving the overall sex gap in life expectancy. Further studies329

could use our method to explain the sex gap using geography, socioeconomic330

status, and causes of death.331

Our proposed combination of two analytical decomposition methods can332

handle the problem of a composed life expectancy, thereby giving an efficient333

framework for analyzing differences in life expectancy while accounting for334

population heterogeneity on fixed characteristics. We give both R code and335

spreadsheet implementations of the method. Our framework is straightfor-336

ward to use and does not require high computational capacity, spreadsheet337

implementation in a spreadsheet-like environment while providing results338

comparable to those of the widely used Horiuchi method. The main advan-339

tages of the proposed method are its computational efficiency and ease of340

implementation over the commonly used Horiuchi method. Further efforts341

in alleviating the sex gap in mortality are required. The main cause of death342

contributions suggests that attention to the determinants of neoplasms,343

cardiovascular, and respiratory diseases could play a substantial role in344

reducing the sex gap in life expectancy.345
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